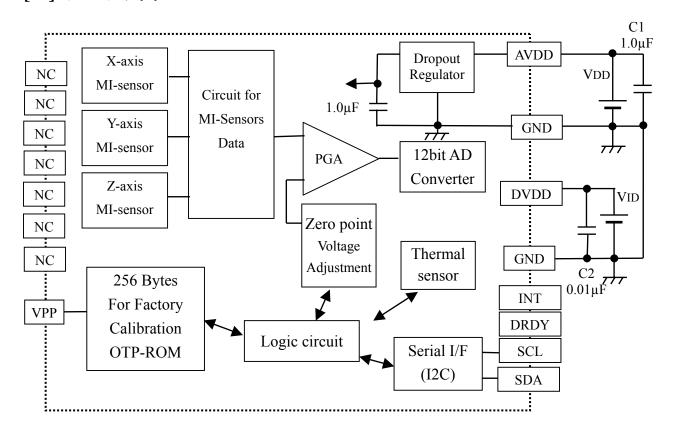
目次

[1] 適用範囲	2
[2] 概 要	2
[3] ブロック図	2
 [4] 外形寸法とマーキング図	3
[5]端子説明	
[6] 絶対最大定格	
[7] 推奨動作条件	
[8] 電気的特性	
[9] 磁気特性	
[10] 測定回路	
[11] 極性	
[12] タイミングチャート	
12-1. I2Cバス タイミングチャート	
12-2. Power OFF and Power ON	
[13] 測定タイミングダイアグラム	8
13-1. Normal State	
13-2. Force State	9
13-3. オフセット調整	
13-3-1. オフセット調整とは	11
13-3-2. HOSTが保持するパラメータ	11
13-3-3. 手順	11
13-3-4. Offset registers	13
13-4. Self –test	14
[14] 制御インターフェース	15
14-1. Power Supplies	15
14-1-1. AVDD	15
14-1-2. DVDD	
14-1-3. Internal dropout regulator	15
14-2. I2C slave interface	
14-3. Interrupt signal	
14-4. DRDY signal	
14-5. レジスタ	
14-5-1. 出力レジスタ	
14-5-2. 制御レジスタ	
[15] コマンド	
15-1. コマンドシーケンス	
15-1-1. リードコマンド	
15-1-2. ライトコマンド	
[16] レジスタ	
16-1. レジスタの形式	
16-2. レジスタマップ	
16-3. レジスタマップ詳細	
[17] 信 頼 性 試 験 条 件	
[18] 半田付けリフロー条件	
[19] 注 意 事 項	32

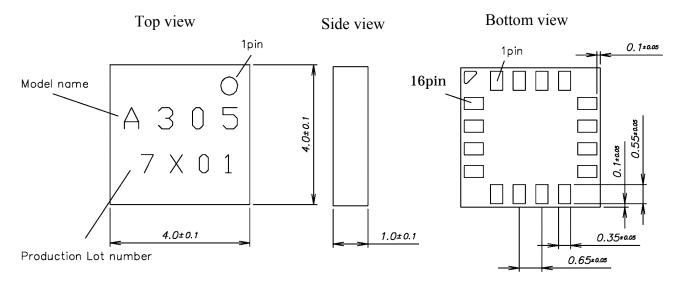
[1] 適用範囲


本仕様書は、愛知製鋼株式会社が、****に納入する3軸磁気センサ AMI305 に適用します。

[2] 概要

AMI305 は 3 方向の磁気を感知するための各々の MI センサーと、そのセンサを動作させるための制御用 IC を小型パッケージに集積化したインテリジェント電子コンパスです。

AMI305の制御用ICは、3個のMIセンサから磁気信号を検出するための専用回路と、各センサの原 点と感度を適当な値に補正を行なうことができる増幅器と、周囲温度を測定できる温度センサと、12bitADコンバータと、I2Cのシリアル出力回路と、定電圧回路と、各回路を制御するロジック回路とを持っています。


[3] ブロック図

Note)

制御信号のSCLとSDAには、DVDDとの間にESD保護ダイオードが入っています。SCLとSDAはDVDD+0.3Vより大きな電圧の許容性がありません。

[4] 外形寸法とマーキング図

[5]端子説明

端子名	端子 No.	入出力	機能	条件
	110.			
DVDD	1	電源	Digital 回路部電源端子	DVDD-GND の端子近傍に
GND	2	電源	Digital Ground端子	0.01μFのパスコンを実装し
				てください。
AVDD	3	電源	Analog 回路部電源端子	AVDD-GND の端子近傍に
GND	4	電源	Analog Ground端子	1.0μFのパスコンを実装して
				ください。
NC	5-11	-	無接続端子	_
Vpp	12	-	検査用端子	無接続で使用してください
INT	13	出力	割り込み出力端子	_
DRDY	14	出力	測定終了を知らせる出力端子	_
SCL	15	入出力	I2C通信用クロック入力端子	_
SDA	16	入出力	I2C通信用データ入出力端子	_

[6] 絶対最大定格

項目	記号	定格値	単位
電源電圧	Vdd	-0.3 to +5.0	V
	Vid	-0.3 to +4.0	V
保存温度	Tstg	-40 to +125	°C
入力電圧	Vin	-0.3 to VID+0.3	V

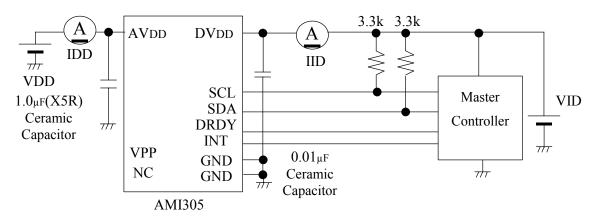
[7] 推奨動作条件

項目	記号	Min.	Тур.	Max.	単位
電源電圧	Vdd	1.70	2.50	3.60	V
	Vid	1.70	1.80	VDD	V
動作温度	Topr	-20		+85	°C

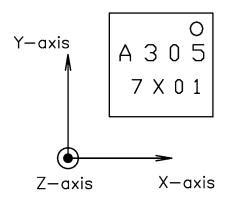
[8] 電気的特性

(AVDD=+2.50V 、DVDD=+1.80V 、AVDD - GND に 1.0μFのセラミックコンデンサ)

項目	記号	条件	Min.	Тур.	Max.	単位
測定時	IDD1	Output Data Rate = 20SPS,		0.15	1	mA
平均動作電流	IID1	Normal-Mode		0.1	2.0	μΑ
Stand-by 時	IDD2	AVDD= +2.4V to 2.9V		7	10	μΑ
動作電流	IID2			0.1	2.0	μΑ
OFF-mode	IDD3				1	μΑ
Leak 電流	IID3				1	μΑ
ADC 分解能				12		bit
I2C 動作周波数	fscl		0		400	kHz
スタートコンディション セット時間	tsta		0.6			μs
ハイレベル入力電圧	Vih		70%			V
ハイレベル八万电圧	VIII		DVDD			v
ローレベル入力電圧	VIL				30%	V
					DVDD	
ハイレベル出力電圧	Voh		80% DVDD			V
ローレベル出力電圧	Vol	IOL = +3mA	BVBB		20% DVDD	V
I2C アドレス			1	Fh/rea		
			1Eh/write			
Turn on time 1	tON1	from Off -mode to Stand-by		200	250	μs
Turn on time 2	tON2	from Stand-by –mode to Active–mode			8	μs
Turn off time 1	tOFF1	from Active -mode to Stand-by -mode			30	μs

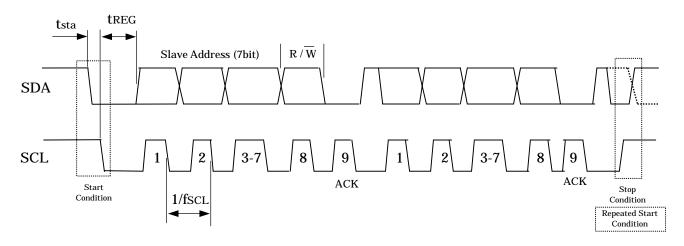

[9] 磁気特性

(AVDD=+2.50V 、DVDD=+1.80V 、AVDD - GND に 1.0μFのセラミックコンデンサ)

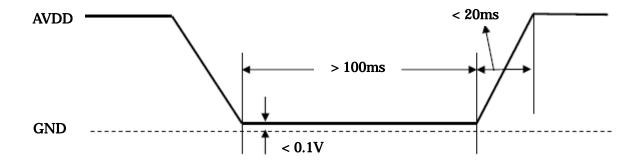

項目	記号	条件	Min.	Тур.	Max.	単位
動作範囲(*1)	Rm	Ta= +25 °C		± 6.0		gauss
測定可能範囲 (*2)	Ra	出力が飽和しないように XOFFSET, YOFFSET, ZOFFSETで オフセットを調整する		± 12		gauss
直線性	Lin	$Rm = \pm 1.5 gauss$, $Ta = +25$ °C		0.5	2	%FS
無磁場での		Ta= +25 °C		0		LSB
出力	Vofs	温度による変化量 (Ta=+25°C 基準、Ta=0~+60)	-3		+3	milligauss /
		Ta= +25 °C		300		LSB/gauss
磁気感度	deltaV	温度による変化率 (Ta=+25°C 基準、Ta=0~+60)	-7		+5	%
方位分解能		Ta= +25 °C , Rm=±0.3gauss の 水 平磁場		± 0.9		degree
方位正確さ		$Ta= +25$ °C, $Rm= \pm 0.3$ gauss の 水		. 0.6	. 1.0	1
(*3) (*4)		平磁場		± 0.6	± 1.0	degree
ADC	Fr	Ta= +25 °C			1000	SPS
スルーレート	ГІ					_
Maximum Exposed Field		センサの動作に影響を与えない磁場			10000	gauss

- *1: 動作範囲: 測定領域があらかじめセットされています。
- *2: 測定可能範囲: 適切なオフセットに調整することで総合的に測定できる範囲です。
- *3: PCB に製品を取り付けた後に、再校正します。
- *4: 軸干渉は"Axis interference" レジスタ を用いて補正されています。

[10] 測定回路


[11] 極性

矢印の方向は北を向けたときに+となる方向です。


[12] タイミングチャート

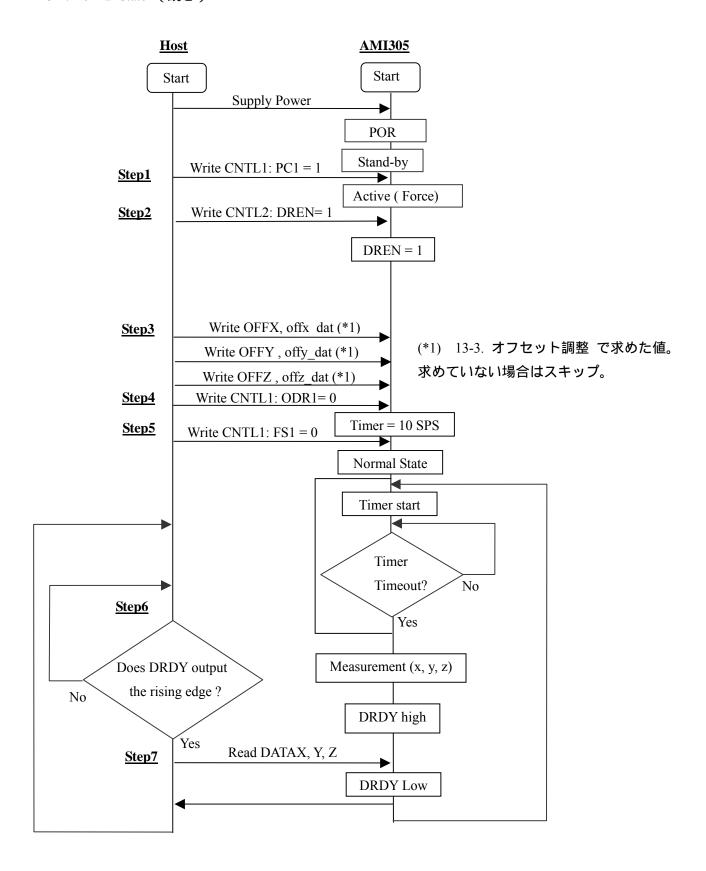
12-1. I2C バス タイミングチャート

12-2. Power OFF and Power ON

安定した起動を実現するため、Host は 下図 の制御をしなければなりません。.

[13] 測定タイミングダイアグラム

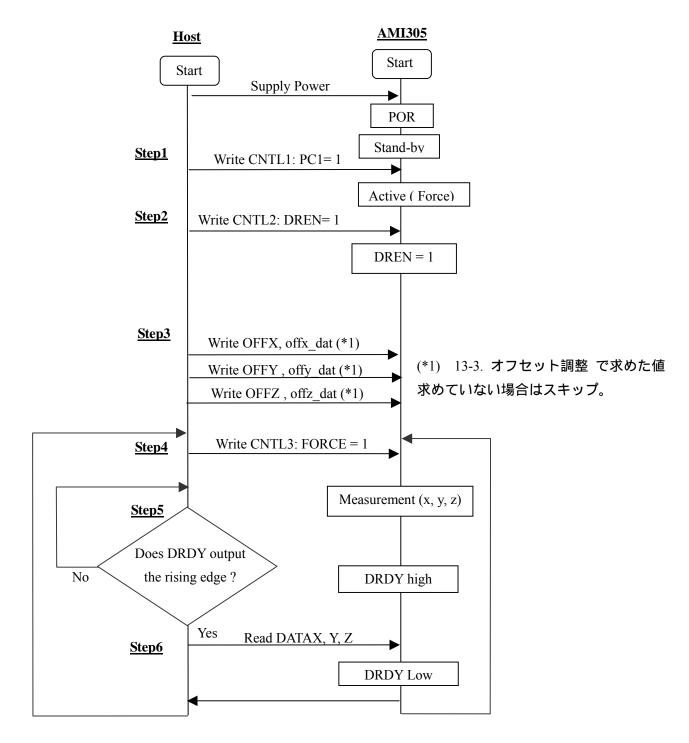
測定モードには、下記の2通りがある。


Normal State	AMI305 は、指定された周期 (10SPS or 20SPS)で周期測定を行う。
Force State	ホストからの測定要求にて、AMI305 は測定を行う。

13-1. Normal State

Normal State sequence

Step1	AMI305 Active (Force State)
Step2	Set DRDY ready function enable
Step3	Set offx dat, offy dat, offz dat
Step4	Set Output Data rate
Step5	Set Normal state
Step6	Does DRDY output the rising edge?
Step7	Read DATAX, DATAY, DATAZ


13-1. Normal State (続き)

13-2. Force State

Force State sequence

Step1	AMI305 Active (Force State)
Step2	Set DRDY ready function enable
Step3	Set offx_dat, offy_dat, offz_dat
Step4	Measurement Request
Step5	Does DRDY output the rising edge?
Step6	Read DATAX, DATAY, DATAZ
Step7	Next Step5

13-3. オフセット調整

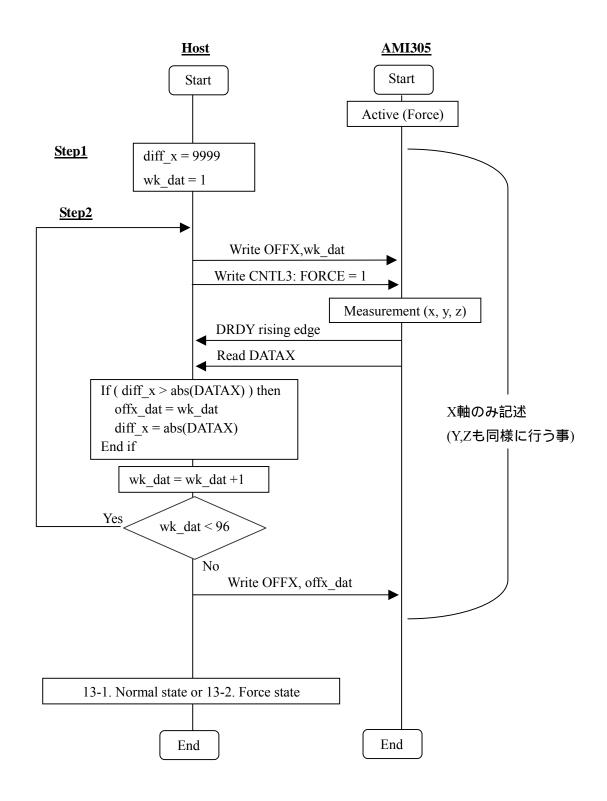
13-3-1. オフセット調整とは

電気的に動作点を変更する事で、実装後の磁気環境下で出力値を 0 付近にする事である。

13-3-2. HOST が保持するパラメータ

ホストは、下記のパラメータを下記の 11-3-3. 手順で求めた後、メモリに保存し、AMI305 の電源投入後に設定する必要がある。

No	Parameter	内容
1	offx_dat	X 軸のオフセットの調整値
2	offy_dat	Υ 軸のオフセットの調整値
3	offz_dat	Z軸のオフセットの調整値


13-3-3. 手順

オフセット調整の手順を下記に示す。

手順

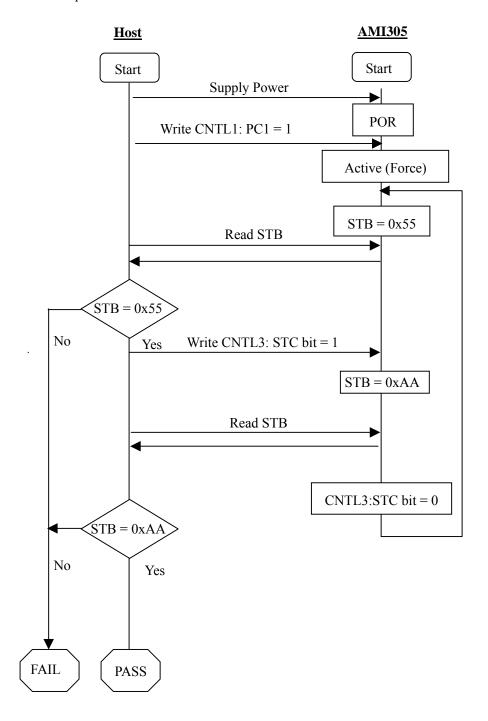
Step1	設定値の初期化。
Step2	それぞれの OFFX の組み合わせを見つけることによって、
	offx_dat を入手します。

13-3-3. 手順(続き)

13-3-4. Offset registers

Offset レジスタには fine があります。

下表は Offset X レジスタ の構造を示します。


	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
OFFX	0x6C	Reserved				fine			
		X	X	X	X	X	X	X	X
	0x6D				Reser	ved			

Offset Y、Offset Z レジスタ も同じ構造です。

13-4. Self –test

Self-test は電気的な機能性を確認するために使用されます。 Self-test は単純な機能で、この応答は既知の期待値と比較されます。

Self -test sequence

[14] 制御インターフェース

14-1. Power Supplies

14-1-1. AVDD

AVDD は電源を供給する端子です。AMI305 はこの端子から供給される電流で動作します。

14-1-2. DVDD

DVDD はデジタル入出力の基準電圧の端子です。

14-1-3. Internal dropout regulator

AMI305 は AVDD からの電源を安定化するために定電圧 regulator を内蔵しています。

14-2. I2C slave interface

I2C インターフェースを下記に示す。

端子	内容
SCL	I2C Clock
SDA	I2C Data

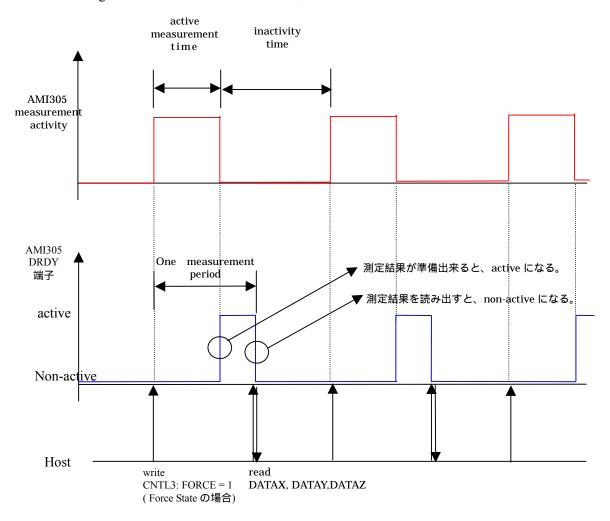
Master/ slave	Slave only
Address	アドレスは7ビット構成である。
	アドレスは 0001111b (0x1F/read, 0x1E/wirte) です。
転送速度	Fast mode 400kHz

14-3. Interrupt signal

本 IC に入力される MI センサからの信号レベルを監視するものあり、全測定モード共通の機能です。規定レベルを超えた信号が入力されると、下記のシーケンスを行う。

INS1 の該当軸のビットを"1"をライト。

各軸の INS1 をまとめて、3 軸の OR 信号とし STA1:INT をライト STA1:INT(='high')を、INT 端子より出力。


解除は、INL をリードすることで行われ、これにより各軸の INS1 及び STA1:INT (INT 端子)がクリアされます。また、どの軸で発生したかは、INS1 で判別できます。

関係するレジスタは下記の通り。

レジスタ	設定内容					
THR1	規定レベル					
STA1:INT	interrupt 発生の有無					
INS1:PXSI,PYSI,PZSI	各軸の interrupt 発生の有無					
NXSI,NYSI,NZSI						
INL	Interrupt クリア					
CNTL2 : IEN	interrupt function Enable/ disable					
INC1: XIEN	X interrupt Enable/ disable					
INC1: YIEN	Y interrupt Enable/ disable					
INC1: ZIEN	Z interrupt Enable/ disable					
INC1: IEA	INT 端子 Active level Low / High					
INC1: IEL	signal latched/one pulse					

14-4. DRDY signal

DRDY signal のシーケンスを下記に示す。

inactivity time 中に測定結果が読み出されなかった場合、STAT1:DOR をセットします。

関係するレジスタは下記の通り。

レジスタ	内容
CNTL2:DREN	DRDY 端子 Enable/ disable
CNTL2:DRP	DRDY 端子 Active Level Low / High
STA1:DRDY	DRDY 端子の状態
STA1:DOR	出力データのオーバーラン

14-5. レジスタ

14-5-1. 出力レジスタ

磁気の測定結果及び状態を出力する。

磁気の測定結果

DATAX	X channel 測定結果
DATAY	Y channel 測定結果
DATAZ	Z channel 測定結果

Status register(s)

STAT1	Status
-------	--------

14-5-2. 制御レジスタ

本 IC を制御するレジスタは下記の通りである。

Control register(s)

Power modes	CNTL1
Functional state	CNTL2
Interrupt controls	INC1 / ITHR1

Measure register(s)

Measurement mode	CNTL1/ CNTL3
Preset time	PRET
temperature	ТЕМР

[15] コマンド

15-1. コマンドシーケンス

コマンドは、リードコマンドとライトコマンドの2パタンです。 リードコマンドは、レジスタの読み込み及び出力値の呼び出し時に使用する。 ライトコマンドは、レジスタの設定時に使用する。

コマンドシーケンスを下記に示す。

15-1-1. リードコマンド

Master	S	SAD+		RAD		Sr	SAD+			Α		Α		N	P
		W (*1)					R (*1)								
Slave			A		A			A	RDA1		RDA2		•		

Term	Definition	Term	Definition
S	Start Condition	SAD + W	slave address + write
			(0x1E)
Sr	Restart Condition	SAD + R	slave address + read
			(0x1F)
A	ACK (SDA_Low)	RAD	読み込みアドレス
	_		(register)
N	NACK (SDA_High)	RDA1	読み込みデータ1
P	Stop Condition	RDA2	読み込みデータ2

(*1) 7 6 5 4 3 2 1 0 SAD W/R

15-1-2. ライトコマンド

Master	S	SAD+W (*1)		WAD		WDA1		WDA2			P
Slave			Α		Α		Α		A	Α	

Term	Definition	Term	Definition
S	Start Condition	SAD + W	slave address + write
			(0x1E)
A	ACK (SDA_Low)	WAD	書き込みアドレス
			(register)
N	NACK (SDA_High)	WDA1	書き込みデータ1
P	Stop Condition	WDA2	書き込みデータ2

(*1) 7 6 5 4 3 2 1 0 SAD W/R

[16] レジスタ

16-1. レジスタの形式

レジスタの形式を下記に纏める。

Type	Items	Comments
TYPE1	制御及び状態	符号なし1バイト(unsigned char)。
TYPE2	温度	2の補数の符号あり1バイト。
		-128d = 0x80
		0d = 0
		127d = 0x7F
TYPE3	磁気などの出力	2の補数の符号あり2バイト。
		-2048d = 0xF800
		0d = 0x000
		2047d = 0x07FF
		格納形式は、Little Endian である。
TYPE4	Interrupt threshold	unsigned 2 byte.
		0d = 0x0000
		2047d = 0x07FF
		格納形式は、Little Endian である。

16-2. レジスタマップ

レジスタを、下記に示す。各アドレスのデータ幅は8ビットです。

Reg.Name	Address	Type	R/W	Set Contents	Remark
Not used	0x00-0x0B	-	-	-	-
STB	0x0C	TYPE1	-	Self-test response	-
INFO	0x0D/0x0E	TYPE3	R	More Info	-
WIA	0x0F	TYPE1	R	Who I am	-
DATAX	0x10/0x11	TYPE3	R	X Output value	-
DATAY	0x12/0x13	TYPE3	R	Y Output value	-
DATAZ	0x14/0x15	TYPE3	R	Z Output value	-
INS1	0x16	TYPE1	R	Interrupt source1	-
Not used	0x17	1	-	-	-
STAT1	0x18	TYPE1	R	Status1	-
Not used	0x19	-	-		-
INL	0x1A	TYPE1	R	Interrupt release	-
CNTL1	0x1B	TYPE1	R/W	Control setting 1	-
CNTL2	0x1C	TYPE1	R/W	Control setting 2	-
CNTL3	0x1D	TYPE1	R/W	Control setting 3	-
INC1	0x1E	TYPE1	R/W	Interrupt Control1	-
Not used	0x1F	ı	-	-	-
ITHR1	0x26/0x27	TYPE4	R/W	Interrupt threshold	-
-	0x28-0x2F	1	-	Reserved	-
PRET	0x30	TYPE1	R/W	Preset time	-
-	0x46-0x5F	-	-	Reserved	-
TEMP	0x60/0x61	TYPE4	R	Temperature value	-
OFFX	0x6C/0x6D	TYPE4	R/W	Offset X value	-
OFFY	0x72/0x73	TYPE4	R/W	Offset Y value	-
OFFZ	0x78/0x79	TYPE4	R/W	Offset Z value	-
-	0x7A-0x95	-	-	Reserved	
VER	0xE8/0xE9	TYPE4	R	Firmware version	-
SN	0xEA/0xEB	TYPE4	R	Serial Number	-

Note1) TYPE3 と TYPE4 は 2bytes 単位で通信してください。

16-3. レジスタマップ詳細

"Self-Test Response" Register

Self-Test Response

Register	Туре	Main Usage
STB	8bit / R	Self test response

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
STB	0x0C		CC/CRTL:		B=0xAA CRTL3=0				

[&]quot;Information " Register

Information

Register	Type	Main Usage
INFO	16bit / R	

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
INFO	0x0D	X	X	X	X	X	X	X	X
	0x0E	X	X	X	X	X	X	X	X

[&]quot;Who I Am " Register

Who I Am

Register	Type	Main Usage
WIA	8bit / R	

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
WIA	0x0F				0x	47			

"Output value "Registers

X Output value

Register	Туре	Main Usage
DATAX	16bit / R	X channel 測定結果

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
DATAX	0x10	LSB7	LSB6	LSB5	LSB4	LSB3	LSB2	LSB1	LSB0
	0x11	MSB7	MSB6	MSB5	MSB4	MSB3	MSB2	MSB1	MSB0

Y Output value

Register	Type	Main Usage
DATAY	16bit / R	Y channel 測定結果

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
DATAY	0x12	LSB7	LSB6	LSB5	LSB4	LSB3	LSB2	LSB1	LSB0
	0x13	MSB7	MSB6	MSB5	MSB4	MSB3	MSB2	MSB1	MSB0

Z Output value

Register	Type	Main Usage
DATAZ	16bit / R	Z channel 測定結果

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
DATAZ	0x14	LSB7	LSB6	LSB5	LSB4	LSB3	LSB2	LSB1	LSB0
	0x15	MSB7	MSB6	MSB5	MSB4	MSB3	MSB2	MSB1	MSB0

"Interrupt source " Register

Interrupt source

Register	Type	Main Usage
INS1	8bit / R	Interrupt 現象が発生した事を各軸単位で保持する。

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
INS1	0x16	PXSI	PYSI	PZSI	NXSI	NYSI	NZSI	NZSI	-

bit	名称	内容	default
7	PXSI	+X軸で Interrupt 現象(ITHR1 の閾値を超えた)が発生し	0
		た場合、1を書き込む。	
		1に設定された後、INL の読み込みにてクリアされる。	
6	PYSI	+Y 軸で Interrupt 現象(ITHR1 の閾値を超えた)が発生し	0
		た場合、1を書き込む。	
		1 に設定された後、INL の読み込みにてクリアされる。	
5	PZSI	+Z 軸で Interrupt 現象(ITHR1 の閾値を超えた)が発生し	0
		た場合、1を書き込む。	
		1 に設定された後、INL の読み込みにてクリアされる。	
4	NXSI	- X軸で Interrupt 現象(ITHR1 の閾値を超えた)が発生し	0
		た場合、1を書き込む。	
		1に設定された後、INL の読み込みにてクリアされる。	
3	NYSI	-Y 軸で Interrupt 現象(ITHR1 の閾値を超えた)が発生し	0
		た場合、1を書き込む。	
		1に設定された後、INL の読み込みにてクリアされる。	
2	NZSI	-Z 軸で Interrupt 現象(ITHR1 の閾値を超えた)が発生し	0
		た場合、1を書き込む。	
		1に設定された後、INL の読み込みにてクリアされる。	
1	MROI	測定範囲外 (range overflow)	0
		(全軸共通)	
0	-		-

"Status" Register

Status1

Register	Type	Main Usage
STA1	8bit / R	端子に出力する情報を格納する。

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
STA1	0x18	RES	DRDY	DOR	INT	-	-	-	-

bit	名称	内容	default
7	RES	Reserved	-
6	DRDY	測定データの準備状態を知らせるビットで、本ビットの出力は DRDY 端子に出力される。 0: 測定データの準備 NG(測定中) 1: 測定データの準備 OK	0-
5	DOR	Inactivity time 期間に測定データを読み出されなかった場合に1を設定する。 ・1に設定された後、読み込み命令でクリアされる。	0
4	INT	Interrupt 発生を知らせるビットで、本ビットの出力は、INT 端子に出力される。 0 = Interrupt 発生していない。 1 = Interrupt 発生 ・どの軸で発生しているかは、INS1 で判別可能である。 ・1 に設定された後、INL の読み込みでクリアされる	0
3	-	-	-
2	-	-	-
1	-	-	-
0	-	-	-

"Interrupt release" Register

Interrupt release

Register	Type	Main Usage
INL	8bit R	本レジスタを読み込む事で INS1 及び STA:INT ビット(INT 端子)
		をクリアする。

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
INL	0x1A	-	-	-	-	-	-	-	-

"Control Setting" Register

Control Setting1

Control Sc	7tt1115 1	
Register	Type	Main Usage
CNTL1	8bit R/W	Power モード及び測定モードを設定する。

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
CNTL1	0x1B	PC1	PC2	SC	ODR1	ODR2-	ODR3	FS1	FS2

bit	名称	内容	default
7	PC1	Power Model を設定する。	0
		0 = stand-by	
		1 = active	
6	PC2	Reserved	0
5	SC	Reserved	0
4	ODR1	Out Data rate1 を設定する。	0
		0 = 10 SPS(10Hz)	
		1 = 20 SPS (20Hz)	
3	ODR2	Reserved	0
2	ODR3	Reserved	0
1	FS1	測定モードを設定する。	1
		0 = Normal	
		1 = Force	
0	FS2	Reserved	0

Control Setting2

Register	Type	Main Usage
CNTL2	8bit / R/W	Interrupt 端子/DWONE 端子の Enable/Disable の設定をする。

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
CNTL2	0x1C	RES	RES	RES	IEN	DREN	DRP	RES	RES

bit	名称	内容	default
7	-	Reserved	0
6	-	Reserved	0
5	-	Reserved	0
4	IEN	INT 端子のイネーブルを設定する。 0 = ディスネーブル 1 = イネーブル	0
3	DREN	DRDY 端子のイネーブルを設定する。 0 = ディスネーブル 1 = イネーブル	0
2	DRP	DRDY 端子の Active を設定する。 0 = low 1 = high	1
1	-	Reserved	0
0	-	Reserved	0

Control Setting3

[Register	Type	Main Usage
	CNTL3	8bit / R/W	制御パラメータを指定する。

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
CNTL3	0x1D	SRST	FORCE	RES	-	-	-	-	-

bit	,名称	内容	default
7	SRST	ソフトリセットを実施する。POR と同じ手順で実施す	0
		る。	
		0= 何もしない。	
		1= ソフトリセット(POR と同じ手順)を実施開始する。	
6	FORCE	Force モードにおける測定開始信号(Force trg)を発生	0
		させる。	
		0 = 何もしない。	
		1 = ライト後、すぐに Force TRG を発生し、測定を	
		開始する。	
		(CNT1:FS1=1 の時のみ有効)	
5	-	Reserved	0
4	-	Reserved	0
3	-	Reserved	0
2	-	Reserved	0
1	-	Reserved	0
0	-	Reserved	0

"Interrupt control" Register

Interrupt control 1

Register	Type	Main Usage
INC1	8bit / R/W	Interrupt 制御パラメータを指定する。

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
INC1	0x1E	XIEN	YIEN	ZEN	-	IEA	IEL	-	-

bit	,名称	内容	default
7	XIEN	X 軸 Interrupt のイネーブルを設定する。	1
		0 = Disable	
		1 = Enable	
6	YIEN	Y 軸 Interrupt のイネーブルを設定する。	1
		0 = Disable	
		1 = Enable	
5	ZEN	Z軸 Interrupt のイネーブルを設定する。	1
		0 = Disable	
		1 = Enable	
4	-	-	0
3	IEA	interrupt active を設定する。	1
		0 = low	
		1 = high	
2	IEL	interrupt signal を設定する。	0
		0 = latched	
		1 = one pulse(0.05ms)	
1		-	0
0		-	-

"Interrupt threshold" register

Interrupt threshold を設定する。データサイズは2バイトである。設定値は下記の通りある。

3 軸とも、Interrupt threshold を使う。

Interrupt threshold1

Interrupt th	interrupt uneshold									
Register	Type	Main Usage								
ITHR1	16bit / R/W	Interrupt threshold を設定する。								

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
ITHR1	0x26	LSB7	LSB6	LSB5	LSB4	LSB3	LSB2	LSB1	LSB0
	0x27	MSB7	MSB6	MSB5	MSB4	MSB3	MSB2	MSB1	MSB0

"Preset Time" register

Preset Time

Register	Type	Main Usage
PRET	8bit / R/W	測定前のプリセット時間

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
PRET	0x30	-	-	-	-	PS3	PS2	PS1	PS0

bit	Name	Content	default
7	-	-	0
6	-	-	0
5	-	-	0
4	-	-	0
3	PS3		0
2	PS2		0
1	PS1		0
0	PS0		0

[&]quot;Temperature sensor output value" Register

Temperature sensor output value

Register	Type	Main Usage
TEMP	16bit / R	Temperature code

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
TEMP	0x60	LSB7	LSB6	LSB5	LSB4	LSB3	LSB2	LSB1	LSB0
	0x61	MSB7	MSB6	MSB5	MSB4	MSB3	MSB2	MSB1	MSB0

"Offset" registers

電気的動作点を設定する。データサイズは2バイトである。初期値は個体毎に異なる。設定値は下記の通りである。

Offset X

Register	Type	Main Usage
OFFX	16bit / R/W	X-axis offset 調整

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
OFFX	0x6C	Reserved	X	X	X	X	X	X	X
	0x6D				Reser	ved			

Offset Y

211501		
Register	Type	Main Usage
OFFY	16bit / R/W	Y-axis offset 調整

	address	7bit	6bit	5b	4bit	3bit	2bit	1bit	0bit
OFFY	0x72	Reserved	X	X	X	X	X	X	X
	0x73				Reser	ved			

Offset Z

Register	Type	Main Usage
OFFZ	16bit / R/W	Z-axis offset 調整

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
OFFZ	0x78	Reserved	X	X	X	X	X	X	X
	0x79				Reser	ved			

[&]quot;Firmware version" Register

Register	Type	Main Usage
VER	16bit / R	Firmware version

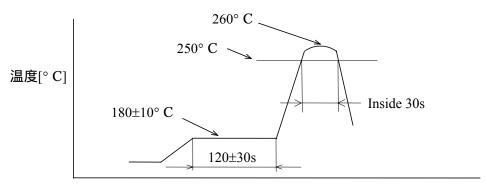
	address	7bit	6bit	5bit	4bit	3bit	2bit	1 bit	0bit
VER	0xE8	RES	Firmware version						
	0xE9	RES	RES	RES	RES	RES	RES	RES	RES

[&]quot;Serial Number" Register

Register	Туре	Main Usage
SN	16bit / R	Serial Number

	address	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
SN	0xEA	LSB7	LSB6	LSB5	LSB4	LSB3	LSB2	LSB1	LSB0
	0xEB	MSB7	MSB6	MSB5	MSB4	MSB3	MSB2	MSB1	MSB0

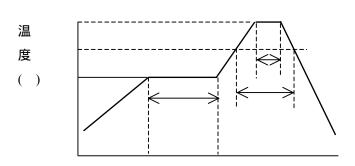
[17]信頼性試験条件


No.	試験項目	試験条件 [EIAJ ED-4701 準拠]	*1. 前処理	試験 時間	n(C=0) [LTPD]	判定 基準
1	高温保存	Ta=+125°C	無	500 hours	22[10%]	
2	低温保存	Ta= -40°C	無	500 hours	22[10%]	
3	高温高湿保存	Ta=+85°C, RH= 85%	1)+2)	500 hours	22[10%]	
4	高温バイアス	Ta=+125°C, VDD=+3.6V	無	500 hours	22[10%]	
5	高温高湿バイアス	Ta=+85°C, RH= 85%, VDD=+3.6V	1)+2)	500 hours	22[10%]	感度変化率が
6	温度サイクル	-40°C ↔ +125°C (30min - 5min - 30min)	1)+2)	100 cycles	22[10%]	
7	熱衝撃	-40°C ↔ +125°C (5min - 10s - 5min)	1)+2)	100 cycles	22[10%]	
8	はんだ耐熱	赤外線リフロー (下図参照:高温 リフロー対応可ピーク+260 以 下)	1)	3 times	22[10%]	
9	静電気耐量	C= 100pF, R= 1.5k ohm, ±2kV (Min.)	無	3 times	22[10%]	
10	CDM 耐量	± 500V	無	1 time	22[10%]	
11	基板曲げ	Support Span 90mm, Flex 3mm,	無	1 time	22[10%]	
		5 ± 1 second hold				
12	はんだ付け性	Ta=+235°C	3)	3 seconds	22[10%]	Covered with solder more than 95% of the dipped portion of the terminal.
13	Sensor Body Strength	R0.5 pressure jig, 10N, 10 ± 1 sec hold	無	1 time	22[10%]	Mechanical Characteristics

[前処理条件](Ref.: EIAJ ED4701-2 B101A)

1) 飽和加湿処理

(Ta= +85°C, RH= 30%, t= 168 hours, + Ta= +30°C, RH= 70%, t= 168 hours)


- 2) 赤外線リフロー (continuously for 3 times)
- 3) 水蒸気エージング (4 時間)

時間(秒) 図.赤外線リフロー条件

[18] 半田付けリフロー条件

半田付けリフロー条件を以下に示します。

予備加熱:(+150~+190) × (90±30秒) +220 帯域:20~50秒

本加熱: +235~+250 ピーク

(10 秒以内)

加熱雰囲気:大気もしくは N2

図2. 半田付けリフロー条件

尚、リペア条件については、+250~+270 ×30秒以内 加熱時間+150秒以内(予備加熱70秒含む)で実施してください。但し、吸湿した製品を使用する場合は、必ずベーキングした後にリペアを実施してください。

[19] 注意事項

- 1) この製品は C-MOS IC を使っております。過度な静電気を印加しないようにしてください。
- 2) 安定した動作を保持するために AVDD-GND 端子間に $0.47\mu F$ 以上の X5R セラミックコンデン サを、DVDD-GND 端子間に $0.01\mu F$ 以上の X5R セラミックコンデンサを実装してお使いください。これらのコンデンサは端子近傍に設置してください。
- AVDD と GND の配線は高周波でのインピーダンスを減らすように太くしてください。
- 4) 保管方法 (防湿梱包状態)

高温多湿、直射日光の当たる場所、温度変化の激しい場所、塵埃の多い場所および 腐食性ガスの環境には放置しないで下さい。

保管時の温湿度は、+5 ~+30 、70%RH以下を保持し、1年以内にご使用下さい。 (尚、保管期間を超えた製品については、本仕様を満足しない場合もございます)

- 5) 防湿梱包開封後の使用条件
 - +5 ~+30 、70%RH以下の環境で保管する場合は、7日以内にご使用下さいただし、防湿庫 (+5 ~+30 、30%RH以下)内での保管を推奨します。
 - +30 、10%RH以下の防湿庫内で保管する場合は、1年以内にご使用下さい。 上記 の条件で、開封後7日を超える場合は、下記の条件でベーキングを実施し、 ご使用下さい。

<ベーキング条件>

- (ア) テーピング状態では、+60 ×168Hr または+40 ×200Hr
- (イ) 耐熱トレー状態では、+125 × 24Hr
- (ウ) ベーキング回数は2回までとして下さい

ただし、初回開封後は使い切りを推奨します。

- 6) 2本の GND 端子は、厚く短い配線で短絡させてください。
- 7) 本製品の OTP メモリ部のデータは、書き換えできません。
- 8) 安定した動作を保持するために AVDD-GND 端子間に $0.47\mu F$ 以上のセラミックコンデンサを、 DVDD-GND 端子間に $0.1\mu F$ 以上のセラミックコンデンサを実装してお使いください。
- 9) センサ特性は、実装基板および実装時の熱の影響により変化することがあります。実装後には、磁気センサの感度と原点を校正することを推奨します。
- 10) 本製品は、強磁性体のような磁気の乱れを起こす部位には搭載しないでください。